
CMAP® Certifi ed
Mobile App Professional
The new certifi cation for Mobile App Testing

Díaz & Hilterscheid Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99
Email: info@diazhilterscheid.com
Website: cmap.diazhilterscheid.com

Apps and mobiles have become an important ele-
ment of today’s society in a very short time frame.
It is important that IT professionals are up-to-date
with the latest developments of mobile technology
in order to understand the ever evolving impacts on
testing, performance, and security. These impacts
transpire and infl uence how IT specialists develop

and test software in their everyday work. A Mobile
App Testing certifi ed professional can support the
requirements team in review of mobile application,
improve user experience with a strong understand-
ing of usability and have the ability to identify and ap-
ply appropriate methods of testing, including proper
usage of tools, unique to mobile technology.

DE December 15–16, 2014 · Berlin –
Christmas Special: 200 € off!

EN December 18–19, 2014 · Berlin –
Christmas Special: 200 € off!

DE January 12–13, 2015 · Berlin

For further information visit
cmap.diazhilterscheid.com or contact us at
info@diazhilterscheid.com.

All our courses are available as inhouse
courses and outside of Germany on demand!

011000100110100101101110011000010111001001111001

110001110001000011100110011110110000010000011110

The Three Pillars of
Agile Quality and Testing
by Robert Galen

Testing the Internet of
Things – The Future is Here
by Venkat Ramesh Atigadda

… and many more

The Magazine for Professional Testers

28
December 2014

42 Testing Experience – 28/2014

The Struggle
Many test managers often struggle to define the proper way to spread
the testing efforts throughout the project or release activities in such
way that it properly reflects the constraints of quality, risk, time, and
cost.

In recent years, the rise in approaches that use short cycles has made
it even harder to create a balanced approach to testing and translate
that into a test strategy – if there is one at all.

We wondered what the reasons for this problem are. In our opinion, one
of the causes lies with confusion about, or even ignorance of, the mean-
ing of the terms “test level”, “test type”, and “test design technique”.

In this age of agile methodologies, “test levels” are often associated
with hierarchies in testing, and since Agile promotes doing all activi-
ties by one team in a single iteration, there is no hierarchy. The same
reasoning goes for “test types”. Because all testing happens within
the iteration (which Scrum calls a sprint), the people involved want to
rush their work and do not want to be bothered with the differences
between various types of testing.

Does it really matter? Well, yes! In a survey amongst about 300 projects
over the last 5 years, almost 50 % of the people involved said that the
quality delivered by agile IT teams was no better than before they
adopted Agile. So we need to give extra attention to quality, since
quality is supposed to be key in Agile.

Test Varieties
When it comes to testing, as one of the quality measures that can be
taken, we want to make things easy to grasp by introducing something
new: the “test variety”. This simple term intends to emphasize to all
people involved that testing is not a one-size-fits-all activity. Even when
all testing activities are done by one team within a single iteration, you
will still need to vary the testing. The first variety of testing, of course,
is static testing, i.e., reviewing documents and source code. Static
testing can both be manual (using techniques like technical review
or inspection) and automated (with tools such as static analyzers).

The next view on test varieties relates to the parties involved. The
developers have a technical view of testing, looking to see whether
the software works as designed and properly integrates with other
pieces of software. The designers want to know whether the system
as a whole works according to their specifications (whatever the form
and shape of these specifications may be). And the business people
simply want to know whether their business process is properly sup-
ported. Now, during these various tests there will be different points

of view, for example related to quality attributes. Functionality will
seldom be forgotten in testing, but what about looking at maintain-
ability by the developers, installability by the designers, and usability
by the business people?

So in this simple example we can already see at least seven test variet-
ies. During the start-up of a project (for example in a “sprint zero”),
a test strategy for the project is established. And for each iteration
the test strategy is tuned to the needs in that cycle. This way, all team
members know what their points of focus must be during this itera-
tion. By the way, please be aware that when we say “test strategy” we
do not necessarily refer to a document, we merely want to emphasize
that there must be an agreed way of assigning the right testing activi-
ties with the right test intensity. And by being aware of the necessary
test varieties you will also have less difficulty in deciding what testing
activities can be done within the sprint and what has to be organized
separately (the common agreement nowadays is that an end-to-end-
test cannot be done by one agile team within their sprint, so this is a
test variety that will often be organized separately).

This is the first step to better testing. By making the people involved
aware of the relevant varieties of testing, it defies the one-size-fits-all
mentality often seen in testing.

Experience-Based and/or Coverage-Based
Approach
The next step in completing the test strategy is to define the proper
approach for the test varieties. Based on the desired quality level and
the perceived risk level, and within the limitations of time and cost, the
team members choose an experience-based and/or coverage-based
approach to testing.

Here is another area of testing that many people struggle with. There
are very many so-called test design techniques. But, in practice, most
testers do not formally apply any technique at all, they just “guess”
the best test cases in their specific situation. One reason for this is that
there are so many possibilities that they decide not to choose at all. In
our opinion, the choice does not need to be hard. In any given situation
you only need a simple choice of approaches and about a handful of
coverage types to be able to do proper testing.

We distinguish two approaches: experience-based and coverage-based.

For experience-based testing there are a choice of possibilities, of
which exploratory testing is the most well-known and appropriate
approach. These tests are effective at finding defects, but less appro-
priate for achieving specific test coverage, unless they are combined
with coverage types.

By Rik Marselis & Bert Linker

Organize Your Testing Using
Test Varieties and Coverage Types

Testing Experience – 28/2014 43

Coverage Type Group Coverage Type Description Variation

Process Algorithm Testing the program structure. •	 Statement coverage
•	 Decision coverage (branch testing/arc

testing)

Paths Coverage of the variations in the process in terms of combina-
tions of paths.

•	 Test depth level 1
•	 Test depth level 2
•	 Test depth level N

Right paths/fault paths Checking both the valid and invalid situations in every defined
error situation. An invalid situation (faulty control steps in the
process or algorithm that precede the processing) should lead
to correct error handling, while a valid situation should be ac-
cepted by the system without error handling.

•	 Right paths only
•	 Right paths and fault paths

State transitions Verification of relationships between events, actions, activities,
states, and state transitions.

•	 0-switch
•	 1-switch
•	 N-switch

Conditions/decisions Decision points Coverage of the various possibilities within a decision point
with the purpose of arriving at the outcomes of TRUE or FALSE

•	 Condition coverage
•	 Decision coverage
•	 Condition/decision coverage
•	 Modified condition/decision coverage
•	 Multiple condition coverage (per deci-

sion point or across decision points)
•	 Cause-effect graph
•	 Pairwise testing

Data Boundary values A boundary value determines the transfer from one equiva-
lence class to another. Boundary value analysis tests the
boundary value itself plus the value directly above and directly
below it.

•	 Light (boundary value + one value)
•	 Normal (boundary value + two values)

Equivalence classes The value range of a parameter is divided into classes in which
different system behaviour takes place. The system is tested
with at least one value from each class.

•	 One value per class
•	 Combination with boundary values

CRUD Coverage of all the basic operations (create, read, update,
delete) on all the entities.

Data combinations Testing of combinations of parameter values. The basis is
equivalence classes. A commonly used technique for data
combinations is the classification tree.

•	 Right paths/fault paths
•	 One or some data pairs
•	 N-wise (e.g. pairwise)
•	 All possible combinations

Data flows Verifying information of a data flow that runs from actor to
actor, from input to output.

Right paths/fault paths Checking both the valid and invalid situations in every defined
error situation. An invalid situation (certain values or combina-
tions of values defined that are not permitted for the relevant
functionality) should lead to correct error handling, while a
valid situation should be accepted by the system without error
handling.

Appearance Heuristics Evaluation of (a number of) usability principles.

Load profiles Simulation of a realistic loading of the system in terms of
volume of users and/or transactions.

Operational profiles Simulation of the realistic use of the system by carrying out a
statistically responsible sequence of transactions.

Presentation Testing the layout of input (screens) and output (lists, reports).

Usability Validating whether the system is easy to use, understand, and
learn.

•	 Alpha testing
•	 Beta testing
•	 Usability lab

Table 1. Overview of the coverage type groups, examples of coverage types, and possible variations

44 Testing Experience – 28/2014

Coverage-based testing uses coverage types. A coverage type focuses
on achieving a specific coverage of quality and risks, and on detecting
specific types of defects. Thus a coverage type aims to cover certain
areas or aspects of the test object. Our starting point is that coverage
types not only indicate what is covered, but also provide directions on
how to do so. Coverage types are, as such, the foundation of the many
test design techniques.

Experience-Based Approach
Below we describe three examples of experience-based testing that
may be considered.

Error Guessing

The tester uses experience to guess the potential errors that might
have been made and determines the methods to uncover the resulting
defects. Error guessing is also useful during risk analysis to identify
potential failure modes. Part of this is “defect-based testing”, where
the type of defect sought is used as the basis for the test design, with
tests derived systematically from what is known about the defect.
Error guessing is often no more than ad hoc testing, and the results of
testing are totally dependent on the experience and skills of the tester.

Checklist-based

The experienced tester uses a high-level list of items to be noted,
checked, or remembered, or a set of rules or criteria against which a
product has to be verified. These checklists are built based on a set of
standards, on experience, and on other considerations. A checklist of
user interface standards used as the basis for testing an application
is an example of checklist-based testing.

Checking of individual elements is often done using an unstructured
list. Each element in the list is directly tested by at least one test case.
Although checklist-based testing is more organized than error guess-
ing, it is still highly dependent on the skills of the tester, and the test
is only as good as the checklist that is used.

Exploratory

Exploratory testing is simultaneous learning, test design, and test ex-
ecution. In other words, exploratory testing is any testing to the extent
that the tester actively controls the design of the tests, as those tests
are performed and use information gained while testing to design new
and better tests. Good exploratory testing is timeboxed – based on a
charter that also defines scope and special areas of attention. Since
exploratory testing is preferably done by two people working together
and who apply relevant coverage types for the specific situation at
hand, this approach is preferred over the alternatives mentioned above.

Hybrid approaches

In practice, the use of hybrid approaches is very common. Exploratory
testing, for instance, can be very well combined with the use of coverage
types. And there are test design techniques that may be used within
experience-based as well as coverage-based testing, such as the data
combination test (which uses classification trees).

Coverage-Based Testing
In our experience many testers have difficulty in selecting the proper
coverage in a specific situation, which is often caused by confusion
about the coverage type that best matches the specific situation they
want to test. That’s why for coverage based testing we have created
four groups of coverage types. Analyse the type of situation you’re in
and select a coverage type from the group that matches this challenge.

Process

Processes can be identified at several levels. There are algorithms of
control flows, event-based transitions between states, and business
processes. Coverage types like paths, statement coverage, and state
transition coverage can be used to test (variations in) these processes.

Conditions/Decisions

In every IT system there are decision points consisting of conditions,
where the system behavior differs depending on the outcome of such
a decision point. Variations of these conditions and their outcomes
can be tested using coverage types like decision coverage, modified
condition/decision coverage, and multiple condition coverage.

Data

Data starts its lifecycle when it is created and ends when it is removed.
In between, the data is used by updating or consulting it. This lifecycle
of data can be tested, as can combinations of input data, and the at-
tributes of input or output data. Some coverage types in this respect
are boundary values, CRUD, data flows, and data combinations.

Appearance

How a system operates, how it performs, and what its appearance
should be are often described in non-functional requirements. Within
this group we find coverage types like heuristics, operational and load
profiles, and presentation.

Coverage Type Table
The Table 1 gives an overview of the coverage type groups, examples
of coverage types, and possible variations.

Although the overview is extensive, it is not exhaustive. Looking at
what can be covered, we could have added aspects like syntax (using
a checklist), semantics and integrity rules (using decision points), au-
thorisation, privacy etc. (using checklists, doing reviews, etc.). However,
we do not want to over-complicate things. We advise you to check
relevant literature for the coverage types and test design techniques
that are suitable in your specific situation.

Test Intensity Table
A main goal of the test strategy is to define the necessary intensity of the
testing, commonly based on risk. High risk requires thorough testing,
low risk may need only light testing. To give you a practical overview
of the coverage types you can select for the different classes, we have

highlighted the most commonly used coverage types and some test
design techniques in which they can be applied. We have not given
an overview for appearance, since the coverage types for appearance
are highly interlinked with the aspect to be tested, and we believe that
giving a simplified overview would be misleading.

Coverage
Type
Group

Test Intensity

Light Average Thorough

Process Statement
coverage and
paths test
depth level 1 –
process cycle
test

Decision coverage
and paths test
depth level 2 –
process cycle test

Paths test depth
level 2 – algorithms
Test and paths test
depth level 3 – pro-
cess cycle test

Conditions Condition
decision
coverage –
elementary
comparison
test

Modified condi-
tion decision cov-
erage – elemen-
tary comparison
test or
condition deci-
sion coverage –
decision table
test

Multiple condition
coverage elemen-
tary comparison
test or
multiple condition
decision coverage –
decision table test

Data One or some
data pairs –
data combina-
tion test

Pairwise – data
combination test

N-wise or all com-
binations – data
combination test

Table 2. Test intensity table

Conclusion
Applying an effective and efficient way of testing does not need to be
bothersome. Using test varieties, a combination of experience-based
and coverage-based testing, and your choice of about five coverage
types that are relevant for your situation, testing in these fast-paced
times will focus on establishing the stakeholders confidence without
tedious and unnecessary work.	 ◼

Literature

▪▪ Testing Embedded Software, Bart Broekman & Edwin Notenboom,
Addison Wesley, 2003, ISBN 9780321159861

▪▪ TMap NEXT for result-driven testing, Tim Koomen, Leo van der
Aalst, Bart Broekman, Michiel Vroon, UTN Publishers, 2006, ISBN
9072194799

▪▪ TMap NEXT in Scrum, Leo van der Aalst & Cecile Davis, Sogeti, 2012,
ISBN 9789075414646

▪▪ Neil’s Quest for Quality; A TMap HD Story, Aldert Boersma & Erik
Vooijs, Sogeti, 2014, ISBN 9789075414837

Rik Marselis is one of Sogeti’s most experienced
management consultants in the field of quality
and testing. He is a well-known author, present-
er, and trainer who has assisted many organiza-
tions throughout the world in actually improving
their testing and thus achieving fit-for-purpose
quality and increased business success.
Twitter: @rikmarselis

Bert Linker is an experienced test consultant
within Sogeti. He is (co)author of several books
and trainer on many test subjects. He has helped
many organizations in traditional and agile en-
vironments improve their testing and quality
processes.

Both Bert and Rik wrote several building blocks for the new TMap
HD book that was presented on 28 October 2014.

> about the authors

http://twitter.com/rikmarselis

